Text Summarization Tool
1. Introduction
Objective: Build a tool for summarizing text using either extractive or
abstractive summarization techniques.
Purpose: Enable concise and meaningful representation of large textual content
for improved readability and insight extraction.
2. Project Workflow
1. Problem Definition:
- Summarize lengthy text content while
retaining its core meaning.
- Key questions:
- Which summarization technique
(extractive or abstractive) is suitable for the dataset?
- What metrics should be used to
evaluate summarization quality?
2. Data Collection:
- Source: News articles, research
papers, or public datasets like CNN/Daily Mail.
3. Data Preprocessing:
- Tokenization, stopword removal, and
handling special characters.
4. Model Selection:
- Extractive: TextRank or
frequency-based techniques.
- Abstractive: Transformer-based
models like BART or T5.
5. Evaluation:
- Compare summaries using ROUGE or
BLEU scores.
3. Technical Requirements
- Programming Language: Python
- Libraries/Tools:
- NLP: NLTK, SpaCy, gensim
- Machine Learning: Hugging Face
Transformers, PyTorch, TensorFlow
- Data Handling: Pandas, NumPy
4. Implementation Steps
Step 1: Setup Environment
Install required libraries:
```
pip install pandas numpy nltk spacy transformers torch tensorflow
```
Download NLP resources:
```
import nltk
nltk.download('punkt')
nltk.download('stopwords')
```
Step 2: Load and Preprocess Data
Load the dataset:
```
import pandas as pd
data = pd.read_csv("text_summarization_dataset.csv")
print(data.head())
```
Preprocess text data:
```
from nltk.corpus import stopwords
from nltk.tokenize import sent_tokenize, word_tokenize
def preprocess(text):
sentences = sent_tokenize(text)
return [word_tokenize(sentence) for
sentence in sentences]
data['tokenized_text'] = data['text'].apply(preprocess)
```
Step 3: Extractive Summarization
Implement TextRank for extractive summarization:
```
from gensim.summarization import summarize
def extractive_summary(text, ratio=0.2):
return summarize(text, ratio=ratio)
data['extractive_summary'] = data['text'].apply(lambda x:
extractive_summary(x))
```
Step 4: Abstractive Summarization
Use a pre-trained model for abstractive summarization:
```
from transformers import pipeline
summarizer = pipeline('summarization')
def abstractive_summary(text, max_len=50, min_len=10):
return summarizer(text,
max_length=max_len, min_length=min_len, do_sample=False)[0]['summary_text']
data['abstractive_summary'] = data['text'].apply(lambda x:
abstractive_summary(x))
```
Step 5: Evaluation
Evaluate summarization quality using ROUGE scores:
```
from rouge import Rouge
rouge = Rouge()
def evaluate_summary(original, summary):
scores = rouge.get_scores(summary,
original)
return scores
data['rouge_scores'] = data.apply(lambda row: evaluate_summary(row['text'],
row['abstractive_summary']), axis=1)
```
5. Expected Outcomes
1. A functional tool capable of generating extractive and abstractive
summaries.
2. Summaries that capture the essence of the original text with high accuracy.
3. Insights into the performance and suitability of different summarization
techniques.
6. Additional Suggestions
- Experiment with advanced transformer models like Pegasus for abstractive
summarization.
- Integrate the summarization tool into a web application using Flask or
Django.
- Incorporate multi-document summarization for better usability.