Sign Language Recognition System – IT and Computer Engineering Guide
1. Project Overview
Objective: Develop a system that recognizes sign language
gestures using convolutional neural networks (CNNs) and gesture tracking
techniques.
Scope: Enable communication for individuals with speech or hearing impairments
by translating gestures into text or speech.
2. Prerequisites
Knowledge: Basics of computer vision, machine learning, and
deep learning.
Tools: Python, OpenCV, TensorFlow/PyTorch, and a dataset of sign language
gestures.
Hardware: A system with a GPU for training deep learning models.
3. Project Workflow
- Dataset Preparation: Collect or use an existing dataset of sign language gestures.
- Preprocessing: Normalize and augment the dataset for robust model training.
- Model Design: Build a CNN architecture for gesture recognition.
- Training: Train the model on the gesture dataset.
- Gesture Tracking: Use OpenCV or Mediapipe for real-time gesture detection.
- Integration: Combine the recognition model with the tracking system to provide outputs in text or speech.
4. Technical Implementation
Step 1: Load and Preprocess Data
import cv2
import os
import numpy as np
from tensorflow.keras.preprocessing.image import ImageDataGenerator
# Load dataset
data_dir = "sign_language_dataset/"
classes = os.listdir(data_dir)
data = []
labels = []
for class_name in classes:
class_dir = os.path.join(data_dir,
class_name)
for img_path in
os.listdir(class_dir):
img =
cv2.imread(os.path.join(class_dir, img_path))
img = cv2.resize(img, (64, 64))
data.append(img)
labels.append(classes.index(class_name))
data = np.array(data)
labels = np.array(labels)
# Normalize data
data = data / 255.0
Step 2: Design and Train CNN Model
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
# Model architecture
model = Sequential([
Conv2D(32, (3, 3), activation='relu',
input_shape=(64, 64, 3)),
MaxPooling2D((2, 2)),
Conv2D(64, (3, 3),
activation='relu'),
MaxPooling2D((2, 2)),
Flatten(),
Dense(128, activation='relu'),
Dense(len(classes),
activation='softmax')
])
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(data, labels, epochs=10, validation_split=0.2)
Step 3: Real-time Gesture Tracking and Recognition
import mediapipe as mp
mp_hands = mp.solutions.hands
hands = mp_hands.Hands()
# Capture video and recognize gestures
cap = cv2.VideoCapture(0)
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_rgb = cv2.cvtColor(frame,
cv2.COLOR_BGR2RGB)
result = hands.process(frame_rgb)
if result.multi_hand_landmarks:
for hand_landmarks in
result.multi_hand_landmarks:
# Extract features and
predict
prediction =
model.predict(process_hand_landmarks(hand_landmarks))
predicted_class =
classes[np.argmax(prediction)]
cv2.putText(frame,
predicted_class, (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)
cv2.imshow("Sign Language
Recognition", frame)
if cv2.waitKey(1) & 0xFF ==
ord('q'):
break
cap.release()
cv2.destroyAllWindows()
5. Results and Insights
Evaluate the accuracy and robustness of the recognition system. Test the model on real-time video data and assess its performance in recognizing different gestures.
6. Challenges and Mitigation
Gesture Variability: Train the model with diverse data to
handle variations in hand size, orientation, and lighting.
Real-time Performance: Optimize the model and use efficient libraries for
faster predictions.
7. Future Enhancements
Expand the system to support multiple sign languages.
Incorporate context-aware recognition for continuous gesture sentences.
8. Conclusion
The Sign Language Recognition System demonstrates the integration of deep learning and computer vision to facilitate communication for individuals with speech or hearing impairments.