Reddit Topic Modeling
1. Introduction
Objective: Use Natural Language Processing (NLP) and Latent Dirichlet
Allocation (LDA) to uncover hidden topics in Reddit discussions.
Purpose: Gain insights into prevalent themes and trends within specific
subreddits or across the Reddit platform.
2. Project Workflow
1. Problem Definition:
- Extract topics from Reddit posts and
comments using NLP techniques.
- Key questions:
- What are the dominant topics in a
subreddit?
- How do these topics evolve over
time?
2. Data Collection:
- Source: Reddit API (PRAW) for
fetching posts and comments.
- Example fields: Post Title, Content,
Comments, Timestamp.
3. Data Preprocessing:
- Tokenization, stopword removal, and
lemmatization.
4. Topic Modeling:
- Use LDA to extract latent topics and
their distributions.
5. Visualization:
- Use word clouds and inter-topic
distance maps for presentation.
3. Technical Requirements
- Programming Language: Python
- Libraries/Tools:
- Data Handling: Pandas, NumPy
- NLP: NLTK, spaCy, Gensim
- Visualization: Matplotlib, PyLDAvis,
WordCloud
- API Interaction: PRAW (Python Reddit
API Wrapper)
4. Implementation Steps
Step 1: Setup Environment
Install required libraries:
```
pip install pandas numpy nltk spacy gensim praw matplotlib pyldavis wordcloud
```
Download spaCy model:
```
python -m spacy download en_core_web_sm
```
Step 2: Data Collection
Fetch data from Reddit using PRAW:
```
import praw
reddit = praw.Reddit(client_id='YOUR_CLIENT_ID',
client_secret='YOUR_CLIENT_SECRET',
user_agent='YOUR_USER_AGENT')
subreddit = reddit.subreddit("learnpython")
posts = []
for post in subreddit.top(limit=100):
posts.append({'title': post.title,
'selftext': post.selftext, 'comments': [comment.body for comment in
post.comments]})
```
Convert to a Pandas DataFrame for analysis:
```
import pandas as pd
df = pd.DataFrame(posts)
```
Step 3: Preprocess Data
Clean and preprocess text data:
- Tokenize, remove stopwords, and lemmatize:
```
import spacy
from nltk.corpus import stopwords
nlp = spacy.load("en_core_web_sm")
stop_words = set(stopwords.words('english'))
def preprocess_text(text):
doc = nlp(text)
tokens = [token.lemma_ for token in
doc if token.is_alpha and token.text.lower() not in stop_words]
return tokens
df['processed'] = df['selftext'].apply(preprocess_text)
```
Step 4: Topic Modeling with LDA
Use Gensim to perform LDA:
```
from gensim.corpora import Dictionary
from gensim.models import LdaModel
dictionary = Dictionary(df['processed'])
corpus = [dictionary.doc2bow(text) for text in df['processed']]
lda_model = LdaModel(corpus=corpus, id2word=dictionary, num_topics=5,
random_state=42, passes=10)
```
Display topics:
```
topics = lda_model.print_topics(num_words=5)
for topic in topics:
print(topic)
```
Step 5: Visualize Results
Create visualizations:
1. Word Clouds:
```
from wordcloud import WordCloud
for i, topic in lda_model.show_topics(formatted=False, num_words=20):
wordcloud = WordCloud(width=800,
height=400).fit_words(dict(topic))
plt.imshow(wordcloud,
interpolation='bilinear')
plt.axis("off")
plt.title(f"Topic {i}")
plt.show()
```
2. Inter-topic Distance Map:
```
import pyLDAvis
import pyLDAvis.gensim_models as gensimvis
lda_vis = gensimvis.prepare(lda_model, corpus, dictionary)
pyLDAvis.show(lda_vis)
```
5. Expected Outcomes
1. Identification of latent topics within Reddit data.
2. Visualizations of word distributions for each topic.
3. Insights into the thematic composition and trends of the subreddit.
6. Additional Suggestions
- Time-based Analysis:
- Analyze how topic distributions
change over time within a subreddit.
- Sentiment Analysis:
- Combine with sentiment analysis to
understand emotional tones associated with topics.
- Deployment:
- Develop an interactive dashboard to
explore topics and visualize trends.