Real-time Weather Forecasting Model
1. Introduction
Objective: Develop a real-time weather forecasting model by integrating with
the OpenWeather API.
Purpose: Provide users with up-to-date weather information for any location.
2. Project Workflow
1. Problem Definition:
- Fetch real-time weather data for
user-defined locations.
- Key questions:
- What is the current weather for a
given city?
- What are the forecasted weather
trends?
2. API Integration:
- Utilize the OpenWeather API to
retrieve real-time data.
- Data Fields: Temperature, Humidity,
Wind Speed, Weather Description, etc.
3. Data Preprocessing:
- Parse and format API response data
for visualization.
4. Visualization:
- Display data in a user-friendly
format with graphs and widgets.
5. Deployment:
- Build a web application for public
access.
3. Technical Requirements
- Programming Language: Python
- Libraries/Tools:
- API Integration: Requests
- Data Handling: Pandas
- Visualization: Matplotlib, Plotly
- Dashboard: Dash or Streamlit
4. Implementation Steps
Step 1: Setup Environment
Install required libraries:
```
pip install requests pandas matplotlib plotly dash
```
Step 2: Register and Obtain OpenWeather API Key
1. Visit the [OpenWeather website](https://openweathermap.org/api).
2. Sign up and generate an API key.
3. Save the API key for later use.
Step 3: Fetch Real-time Weather Data
Use the Requests library to fetch data:
```
import requests
API_KEY = 'your_api_key'
BASE_URL = 'http://api.openweathermap.org/data/2.5/weather'
city = 'London'
params = {'q': city, 'appid': API_KEY, 'units': 'metric'}
response = requests.get(BASE_URL, params=params)
data = response.json()
print(data)
```
Step 4: Parse and Format Data
Extract useful information from the API response:
```
weather_info = {
'City': data['name'],
'Temperature': data['main']['temp'],
'Humidity': data['main']['humidity'],
'Description':
data['weather'][0]['description']
}
print(weather_info)
```
Step 5: Visualize Data
1. Plot Weather Trends:
```
import matplotlib.pyplot as plt
temperature = [weather_info['Temperature']]
cities = [weather_info['City']]
plt.bar(cities, temperature, color='blue')
plt.xlabel('City')
plt.ylabel('Temperature (°C)')
plt.title('Current Temperature')
plt.show()
```
2. Create Interactive Dashboards:
```
import plotly.express as px
fig = px.bar(x=cities, y=temperature, labels={'x': 'City', 'y': 'Temperature
(°C)'}, title='Current Temperature')
fig.show()
```
Step 6: Build and Deploy Application
1. Create Dashboard Using Dash:
```
from dash import Dash, dcc, html
app = Dash(__name__)
app.layout = html.Div([
html.H1('Real-time Weather
Forecasting'),
html.Div([
html.P(f"City:
{weather_info['City']}"),
html.P(f"Temperature:
{weather_info['Temperature']} °C"),
html.P(f"Humidity:
{weather_info['Humidity']}%"),
html.P(f"Description:
{weather_info['Description']}"),
])
])
if __name__ == '__main__':
app.run_server(debug=True)
```
2. Deploy Application:
- Use platforms like Heroku, AWS, or
Google Cloud.
5. Expected Outcomes
1. Real-time weather information for user-defined locations.
2. User-friendly interface to display weather trends and forecasts.
3. A fully functional dashboard accessible via a web browser.
6. Additional Suggestions
- Enhance the dashboard with hourly and daily forecasts using OpenWeather's One
Call API.
- Add location-based detection for automatic weather updates.
- Integrate historical weather data for trend analysis.