Real-time Weather Dashboard
1. Introduction
Objective: Build a real-time weather dashboard that fetches weather data using
APIs and visualizes it in an interactive format.
Purpose: Provide real-time insights into weather conditions for various
locations, aiding in decision-making and planning.
2. Project Workflow
1. Problem Definition:
- Fetch real-time weather data using
APIs.
- Visualize data in an interactive
dashboard format.
- Key questions:
- How can we effectively display
real-time weather information?
- How can users select and view data
for different cities?
2. Data Collection:
- Source: Weather API (e.g.,
OpenWeatherMap, WeatherAPI).
- Data fields: Temperature, Humidity,
Wind Speed, Precipitation, etc.
3. API Integration:
- Use Python libraries to fetch and
parse API data.
4. Data Visualization:
- Create interactive visualizations
using Python.
5. Dashboard Development:
- Build the dashboard interface using
libraries like Streamlit.
3. Technical Requirements
- Programming Language: Python
- Libraries/Tools:
- Data Handling: Pandas
- API Integration: Requests
- Visualization: Matplotlib, Seaborn,
Plotly
- Dashboard Development: Streamlit
- API Source: OpenWeatherMap API (or
similar)
4. Implementation Steps
Step 1: Setup Environment
Install required libraries:
```
pip install pandas matplotlib seaborn plotly streamlit requests
```
Step 2: Obtain API Key
1. Register on OpenWeatherMap (or a similar service).
2. Obtain an API key.
3. Store the API key securely in a configuration file or environment variable.
Step 3: Fetch Weather Data
Use the `requests` library to fetch data:
```
import requests
API_KEY = 'your_api_key'
city = 'London'
url =
f"http://api.openweathermap.org/data/2.5/weather?q={city}&appid={API_KEY}&units=metric"
response = requests.get(url)
weather_data = response.json()
print(weather_data)
```
Step 4: Process and Visualize Data
Extract key information:
```
temperature = weather_data['main']['temp']
humidity = weather_data['main']['humidity']
wind_speed = weather_data['wind']['speed']
```
Visualize data using Plotly:
```
import plotly.express as px
data = {
'Parameter': ['Temperature',
'Humidity', 'Wind Speed'],
'Value': [temperature, humidity,
wind_speed]
}
fig = px.bar(data, x='Parameter', y='Value', title='Weather Parameters')
fig.show()
```
Step 5: Build Real-time Dashboard
Create a dashboard using Streamlit:
```
import streamlit as st
st.title("Real-time Weather Dashboard")
city = st.text_input("Enter City Name", "London")
if city:
url =
f"http://api.openweathermap.org/data/2.5/weather?q={city}&appid={API_KEY}&units=metric"
response = requests.get(url)
weather_data = response.json()
if response.status_code == 200:
temperature =
weather_data['main']['temp']
humidity =
weather_data['main']['humidity']
wind_speed = weather_data['wind']['speed']
st.write(f"Temperature:
{temperature}°C")
st.write(f"Humidity:
{humidity}%")
st.write(f"Wind Speed:
{wind_speed} m/s")
data = {'Parameter':
['Temperature', 'Humidity', 'Wind Speed'], 'Value': [temperature, humidity,
wind_speed]}
st.bar_chart(data)
else:
st.error("City not
found!")
```
Run the dashboard:
```
streamlit run weather_dashboard.py
```
5. Expected Outcomes
1. A functional real-time weather dashboard.
2. Interactive visualizations for key weather parameters.
3. User-friendly interface for fetching and viewing weather data.
6. Additional Suggestions
- Advanced Features:
- Add weather forecasts for upcoming
days.
- Include additional metrics like air
quality index or UV index.
- Deployment:
- Deploy the dashboard online using
services like Streamlit Cloud or Heroku.
- Customization:
- Enable selection of multiple cities
for comparison.
- Add themes and customization options
to the dashboard.