Global Hunger Index Analysis
1. Introduction
Objective: Analyze the Global Hunger Index (GHI) data and correlate it with
factors like GDP, population, and other socioeconomic indicators.
Purpose: Understand the underlying factors contributing to hunger and provide
actionable insights to policymakers.
2. Project Workflow
1. Problem Definition:
- Investigate the relationship between
hunger levels and socioeconomic factors.
- Key questions:
- What factors contribute most to
high hunger index values?
- How does GHI vary with GDP and
population?
2. Data Collection:
- Source: GHI data from official
reports, World Bank GDP datasets, and population data.
3. Data Preprocessing:
- Clean, merge, and format datasets
for analysis.
4. Analysis:
- Perform correlation analysis between
GHI and socioeconomic indicators.
5. Visualization:
- Create charts and heatmaps to
showcase findings.
6. Insights and Recommendations:
- Develop insights for addressing
hunger based on data.
3. Technical Requirements
- Programming Language: Python
- Libraries/Tools:
- Data Handling: Pandas, NumPy
- Visualization: Matplotlib, Seaborn,
Plotly
- Statistical Analysis: Scipy,
Statsmodels
4. Implementation Steps
Step 1: Setup Environment
Install required libraries:
```
pip install pandas numpy matplotlib seaborn plotly scipy statsmodels
```
Step 2: Load and Explore Datasets
Load the datasets (GHI, GDP, Population):
```
import pandas as pd
ghi_data = pd.read_csv("ghi_data.csv")
gdp_data = pd.read_csv("gdp_data.csv")
population_data = pd.read_csv("population_data.csv")
print(ghi_data.head())
print(gdp_data.head())
print(population_data.head())
```
Step 3: Preprocess and Merge Data
Clean and merge the datasets:
```
merged_data = pd.merge(ghi_data, gdp_data, on='Country')
merged_data = pd.merge(merged_data, population_data, on='Country')
print(merged_data.head())
```
Handle missing values and normalize data:
```
merged_data.dropna(inplace=True)
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
merged_data[['GDP', 'Population', 'GHI']] =
scaler.fit_transform(merged_data[['GDP', 'Population', 'GHI']])
```
Step 4: Analyze Correlations
Perform correlation analysis:
```
correlation_matrix = merged_data.corr()
print(correlation_matrix)
```
Visualize the correlation matrix:
```
import seaborn as sns
import matplotlib.pyplot as plt
plt.figure(figsize=(10, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
plt.title('Correlation Matrix')
plt.show()
```
Step 5: Visualization
Create scatter plots for key relationships:
```
sns.scatterplot(data=merged_data, x='GDP', y='GHI')
plt.title('GHI vs GDP')
plt.show()
sns.scatterplot(data=merged_data, x='Population', y='GHI')
plt.title('GHI vs Population')
plt.show()
```
Step 6: Insights and Recommendations
1. Interpret the correlation coefficients and scatter plots.
2. Identify patterns or anomalies in the data.
3. Recommend strategies for reducing hunger based on findings.
5. Expected Outcomes
1. A comprehensive understanding of the relationship between hunger, GDP, and
population.
2. Visualizations highlighting key trends and correlations.
3. Data-driven recommendations for addressing hunger effectively.
6. Additional Suggestions
- Include additional socioeconomic factors like education levels, healthcare
access, and employment rates.
- Perform time-series analysis to observe trends over the years.
- Develop an interactive dashboard for stakeholders to explore the data.