Earthquake Data Visualization
1. Introduction
Objective: Develop a project to visualize and analyze historical earthquake
data using maps and graphs.
Purpose: Gain insights into earthquake trends, locations, magnitudes, and
frequencies for scientific and educational purposes.
2. Project Workflow
1. Problem Definition:
- Visualize earthquake data to
understand geographical and temporal trends.
- Key questions:
- Where do earthquakes frequently
occur?
- What are the trends in earthquake
magnitudes over time?
2. Data Collection:
- Source: Public earthquake datasets
such as USGS or Kaggle.
- Fields: Date, Time, Latitude,
Longitude, Depth, Magnitude, Location.
3. Data Preprocessing:
- Clean and format the data for
analysis.
4. Visualization:
- Create interactive maps and plots.
5. Deployment:
- Build a dashboard to display
visualizations.
3. Technical Requirements
- Programming Language: Python
- Libraries/Tools:
- Data Handling: Pandas, NumPy
- Visualization: Matplotlib, Seaborn,
Plotly, Folium, Geopandas
- Dashboard: Dash or Streamlit
4. Implementation Steps
Step 1: Setup Environment
Install required libraries:
```
pip install pandas numpy matplotlib seaborn plotly folium geopandas dash
```
Step 2: Load and Explore Dataset
Load the earthquake dataset:
```
import pandas as pd
data = pd.read_csv("earthquake_data.csv")
print(data.head())
```
Explore data statistics and trends:
```
print(data.describe())
```
Step 3: Preprocess Data
Clean the dataset to handle missing or inconsistent data:
```
data.dropna(inplace=True)
data['Date'] = pd.to_datetime(data['Date'])
```
Filter relevant data for visualization:
```
filtered_data = data[data['Magnitude'] >= 4.0]
```
Step 4: Create Visualizations
1. Plot Earthquake Trends Over Time:
```
import matplotlib.pyplot as plt
data['Year'] = data['Date'].dt.year
yearly_counts = data.groupby('Year').size()
plt.figure(figsize=(10, 6))
plt.plot(yearly_counts.index, yearly_counts.values, marker='o')
plt.title('Yearly Earthquake Counts')
plt.xlabel('Year')
plt.ylabel('Number of Earthquakes')
plt.show()
```
2. Create Interactive Map:
```
import folium
map = folium.Map(location=[20, 0], zoom_start=2)
for _, row in filtered_data.iterrows():
folium.CircleMarker(
location=[row['Latitude'],
row['Longitude']],
radius=row['Magnitude'],
color='red',
fill=True,
fill_opacity=0.6,
).add_to(map)
map.save("earthquake_map.html")
```
Step 5: Build Dashboard
1. Create Visual Dashboard Using Dash:
```
from dash import Dash, dcc, html
app = Dash(__name__)
app.layout = html.Div([
dcc.Graph(
id='trend-plot',
figure={
'data': [{'x':
yearly_counts.index, 'y': yearly_counts.values, 'type': 'line'}],
'layout': {'title': 'Yearly
Earthquake Counts'}
}
),
html.Iframe(srcDoc=open('earthquake_map.html', 'r').read(),
width='100%', height='500px')
])
if __name__ == '__main__':
app.run_server(debug=True)
```
Step 6: Deployment
Host the dashboard using a web service such as Heroku, AWS, or Google Cloud.
5. Expected Outcomes
1. Interactive map showing historical earthquake locations and magnitudes.
2. Time-series plots of earthquake trends.
3. Accessible dashboard for real-time exploration of earthquake data.
6. Additional Suggestions
- Add filters to the dashboard for region and magnitude.
- Use clustering techniques to identify earthquake-prone areas.
- Integrate real-time earthquake data feeds from USGS APIs.