1. Introduction
Objective: Analyze and visualize deforestation trends by country using
longitudinal data.
Purpose: Understand the rate and patterns of deforestation over time and provide
insights for conservation efforts.
2. Project Workflow
1. Problem Definition:
- Analyze historical deforestation
data by country.
- Key questions:
- Which countries have the highest
deforestation rates?
- What trends are visible over
decades?
2. Data Collection:
- Source: Global Forest Watch, FAO
Forestry Statistics, or other environmental datasets.
3. Data Preprocessing:
- Clean, standardize, and organize
longitudinal data.
4. Analysis:
- Calculate deforestation rates,
compare between countries, and identify trends.
5. Visualization:
- Create visual representations (line
charts, bar plots, maps) to highlight trends.
6. Insights and Recommendations:
- Provide actionable insights based on
the visualized data.
3. Technical Requirements
- Programming Language: Python
- Libraries/Tools:
- Data Handling: Pandas, NumPy
- Visualization: Matplotlib, Seaborn,
Plotly, Geopandas
- Geospatial Analysis: Folium
4. Implementation Steps
Step 1: Setup Environment
Install required libraries:
```
pip install pandas numpy matplotlib seaborn plotly geopandas folium
```
Step 2: Load and Explore Dataset
Load the deforestation data:
```
import pandas as pd
data = pd.read_csv("deforestation_data.csv")
print(data.head())
```
Inspect the data for missing values and structure:
```
print(data.info())
print(data.describe())
```
Step 3: Preprocess Data
Handle missing values and normalize data:
```
data.fillna(0, inplace=True)
```
Transform the data for longitudinal analysis:
```
data_long = pd.melt(data, id_vars=['Country'], var_name='Year',
value_name='Deforestation_Rate')
data_long['Year'] = pd.to_numeric(data_long['Year'])
print(data_long.head())
```
Step 4: Analyze Trends
Group data by country and calculate trends:
```
trend_data =
data_long.groupby('Country').mean().sort_values(by='Deforestation_Rate',
ascending=False)
print(trend_data.head())
```
Step 5: Visualize Data
1. Line Plot of Deforestation Trends:
```
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(12, 6))
sns.lineplot(data=data_long, x='Year', y='Deforestation_Rate', hue='Country')
plt.title('Deforestation Trends by Country')
plt.show()
```
2. Bar Plot of Average Deforestation Rates:
```
trend_data.head(10).plot(kind='bar', color='green', figsize=(10, 5))
plt.title('Top 10 Countries by Average Deforestation Rate')
plt.ylabel('Deforestation Rate')
plt.show()
```
3. Geospatial Visualization:
```
import geopandas as gpd
import folium
world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))
merged = world.merge(data_long.groupby('Country').mean(), left_on='name',
right_on='Country')
world_map = folium.Map()
for _, row in merged.iterrows():
folium.CircleMarker(
location=[row['latitude'],
row['longitude']],
radius=row['Deforestation_Rate']
* 5,
popup=f"{row['Country']}:
{row['Deforestation_Rate']}",
color='red'
).add_to(world_map)
world_map.save("deforestation_map.html")
```
Step 6: Insights and Recommendations
1. Interpret the trends and visualize the impact of policies or events.
2. Highlight regions requiring immediate attention.
3. Suggest conservation strategies or policies based on findings.
5. Expected Outcomes
1. A clear visualization of deforestation trends by country.
2. Insights into the drivers of deforestation.
3. Recommendations for mitigating deforestation.
6. Additional Suggestions
- Include forest recovery data for a comprehensive view.
- Analyze the correlation between deforestation and socio-economic factors.
- Develop a dynamic dashboard for interactive exploration.