Anomaly Detection in Financial Transactions
1. Introduction
Objective: Develop a system to detect anomalies in financial transactions using
machine learning techniques such as Isolation Forest or Autoencoders.
Purpose: Ensure early detection of fraudulent or unusual activities in
financial data to enhance security and operational efficiency.
2. Project Workflow
1. Problem Definition:
- Detect irregularities in financial
transactions that may indicate fraud.
- Challenges include imbalanced data
and evolving fraud patterns.
2. Data Collection:
- Source: Transaction logs, synthetic
datasets (e.g., Kaggle financial datasets).
3. Data Preprocessing:
- Handle missing values, normalize
features, and encode categorical variables.
4. Model Selection:
- Unsupervised approach: Isolation
Forest or Autoencoders.
5. Evaluation:
- Use metrics like Precision, Recall,
and AUC-ROC.
3. Technical Requirements
- Programming Language: Python
- Libraries/Tools:
- Machine Learning: Scikit-learn,
TensorFlow, Keras, PyTorch
- Data Handling: Pandas, NumPy
- Visualization: Matplotlib, Seaborn
4. Implementation Steps
Step 1: Setup Environment
Install required libraries:
```
pip install pandas numpy matplotlib seaborn scikit-learn tensorflow keras
```
Step 2: Load and Preprocess Data
Load the dataset:
```
import pandas as pd
data = pd.read_csv("financial_transactions.csv")
print(data.head())
```
Preprocess the data:
```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
data_scaled = scaler.fit_transform(data.drop(columns=['TransactionID',
'Label']))
```
Step 3: Anomaly Detection Using Isolation Forest
Train and evaluate Isolation Forest:
```
from sklearn.ensemble import IsolationForest
isolation_forest = IsolationForest(contamination=0.01)
isolation_forest.fit(data_scaled)
data['anomaly_score'] = isolation_forest.decision_function(data_scaled)
data['anomaly'] = isolation_forest.predict(data_scaled)
```
Step 4: Anomaly Detection Using Autoencoders
Train and evaluate an Autoencoder:
```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
# Define Autoencoder model
autoencoder = Sequential([
Dense(32, activation='relu',
input_dim=data_scaled.shape[1]),
Dense(16, activation='relu'),
Dense(8, activation='relu'),
Dense(16, activation='relu'),
Dense(32, activation='relu'),
Dense(data_scaled.shape[1],
activation='sigmoid')
])
autoencoder.compile(optimizer='adam', loss='mse')
autoencoder.fit(data_scaled, data_scaled, epochs=50, batch_size=32,
shuffle=True)
# Reconstruction error
reconstructions = autoencoder.predict(data_scaled)
mse = np.mean(np.power(data_scaled - reconstructions, 2), axis=1)
threshold = np.percentile(mse, 99)
data['anomaly'] = mse > threshold
```
Step 5: Evaluation
Evaluate performance:
```
from sklearn.metrics import classification_report, roc_auc_score
print(classification_report(data['Label'], data['anomaly']))
auc = roc_auc_score(data['Label'], data['anomaly_score'])
print("AUC-ROC:", auc)
```
5. Expected Outcomes
1. A system capable of identifying anomalies in financial transactions.
2. Improved understanding of how Isolation Forest and Autoencoders perform on
financial data.
3. Visualization of anomaly patterns for better interpretability.
6. Additional Suggestions
- Fine-tune the contamination parameter in Isolation Forest for better results.
- Experiment with variational autoencoders for enhanced anomaly detection
capabilities.
- Incorporate real-time detection capabilities with API integrations.