Network Graph Visualization

 

BSc IT Project Guide: Network Graph Visualization

1. Project Title

Network Graph Visualization for Social Networks

2. Objective

To develop a tool that visualizes complex network connections such as social networks, using interactive graph structures to represent relationships and data flow between nodes.

3. Scope of the Project

- Import and parse network data (CSV, JSON, or database)

- Visualization of nodes and edges

- Zoom, pan, and drag interactions

- Display node/edge properties on click/hover

- Dynamic graph updates

- Export or share visualizations

4. Technology Stack

Frontend: HTML, CSS, JavaScript, D3.js / Cytoscape.js / vis.js

Backend: Python (Flask/Django) or Node.js (optional)

Database: MongoDB / Neo4j / JSON Files

IDE: VS Code / PyCharm

Visualization Libraries: D3.js, NetworkX, Plotly

5. System Modules

Data Import Module: Load and format graph data

Graph Rendering Module: Display nodes and edges

Interaction Module: Handle zoom, pan, drag, click

Filter/Search Module: Highlight nodes by attribute

Export Module: Save graphs as image or JSON

6. ER Diagram Overview

- Node(NodeID, Label, Type, Attributes)

- Edge(EdgeID, SourceNodeID, TargetNodeID, RelationType, Weight)

7. Sample Data Format (JSON)

{

  "nodes": [

    {"id": "1", "label": "Alice"},

    {"id": "2", "label": "Bob"}

  ],

  "edges": [

    {"source": "1", "target": "2", "label": "friend"}

  ]

}

8. Functional Requirements

- Import data from JSON/CSV

- Display network graph with visual styling

- Node interaction (hover/click info)

- Graph filtering and search

- Export visualization

9. Non-Functional Requirements

- Lightweight and responsive UI

- Support for large-scale networks

- Cross-browser compatibility

- Accessible design and color coding

10. Development Roadmap

Phase 1: Requirement analysis and dataset collection

Phase 2: Design and selection of graph library

Phase 3: Development of data parser and visualization modules

Phase 4: Integration, testing, optimization

Phase 5: Final documentation

11. Suggested Project Report Structure

1. Title Page

2. Acknowledgement

3. Certificate

4. Abstract

5. Table of Contents

6. Introduction

7. System Analysis

8. System Design

9. Implementation

10. Testing

11. Limitations & Future Enhancements

12. Conclusion

13. References

14. Appendix

12. Optional Enhancements

- Real-time data updates using WebSocket

- Integration with Neo4j for dynamic querying

- Node clustering and community detection

- Heatmaps and influence scores

- 3D graph visualization using Three.js or Plotly